

Tetrahedron 57 (2001) 2729-2738

Investigation of the synthesis of angular tricyclic compounds by intramolecular Pauson–Khand reaction of *exo-* and *endo-*cyclic enynes

Miyuki Ishizaki,* Kazuhiko Iwahara, Yuka Niimi, Hiroshi Satoh and Osamu Hoshino*

Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan

Received 11 January 2001; accepted 5 February 2001

Abstract—Intramolecular Pauson–Khand reaction of various alkynyl *exo*-alkylidene-cyclohexanes and -pentane gives angular type 6-5-5 and 5-5-5 tricyclic compounds in good to high yield. The present reaction also offers convenient construction of two contiguous quaternary centers, which could not be synthesized from alkynyl *endo*-cycloolefins. Scope and limitation of the present reaction of various *exo*- and *endo*-cyclic enynes are also described. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since the first report¹ of intermolecular Pauson-Khand reaction in 1971, it is well known to be a useful reaction for formation of cyclopentenones from an alkyne-cobalt complex with alkenes by [2+2+1] cycloaddition.² In 1981, Schore and co-workers³ reported the first intramolecular version of the Pauson-Khand reaction and the reaction has been widely applicable protocol for synthesis of natural products.⁴ However, for the intramolecular reaction of cyclic olefins, there are many reports on the reaction of endo-cyclic cyclopentenes⁵ having alkynyl group on olefinic moiety to give angular tricyclic compounds, which constitute the 5-5-5 ring system, so called triquinanes. The similar reaction of exo-cyclic envnes is an alternative useful approach to obtain angular tricyclic compounds. However, only a few reports⁶ on *exo*-cyclic envnes containing three or four membered ring systems have appeared, despite of the possibility that the latter approach should be superior to the former one; highly hindered tetra-substituted cyclic enynes are required for synthesis of angular tricyclic compounds having continuous quaternary carbon centers⁷ by the reaction of *endo*-cyclic enynes.⁸ Concurrently, Malacria and co-workers have reported^{6d} synthesis of angular triquinane by intramolecular Pauson-Khand reaction of exo-cyclic enyne, although the yield was quite moderate (20%). Therefore, the difference of reactivity on intramolecular Pauson-Khand reaction of exoand *endo*-cyclic olefins attracted us to investigate its scope and limitation. Here, we wish to report our results on the

^{*} Corresponding authors. Tel.: +81-3-3260-6725; fax: +81-3-3258-3045; e-mail: ishizaki@ps.kagu.sut.ac.jp; hoshino@ps.kagu.sut.ac.jp

reaction of various *exo-* and *endo*-cyclic enynes to form angular type 6-5-5 and 5-5-5 tricyclic compounds (Scheme 1).⁹

Scheme 1.

2. Results and discussion

At first, we examined intramolecular Pauson–Khand reactions of various *exo*-cyclic enynes (1–11), which would lead to 6–5–5 and 5–5–5 angular tricyclic compounds. Synthesis of various *exo*-cyclic enynes (1–11) was as follows (Scheme 2). Namely, conversion of alcohol (23)¹⁰ to iodide (24), treatment of which with acetylene–ethylene-diamine complex gave an enyne (1) in 64% overall yield. Enynes (2, 4, 6, 8–10) were synthesized in 25–90% yield by Wittig olefination of the corresponding ketones (25, ¹¹ 29, ¹² 33, ¹³ 34, ¹³ 35¹⁴). Treatment of 2 with BuLi followed by exposure with MeI afforded 7 in 91% yield. Enynes (3, 5)

Keywords: Pauson–Khand reaction; exocyclic enyne; endocyclic enyne; angular tricyclic compound.

Scheme 2. (a) PPh₃, I₂, Py, CH₂Cl₂; (b) HC=CLi(en), DMSO-Et₂O; (c) MeBr·PPh₃, *t*-BuOK, THF; (d) BuLi, MeI, THF; (e) EtBr·PPh₃, *t*-BuOK, THF; (f) CH₂Br₂, Zn, TiCl₄, CH₂Cl₂; (g) DIBAH, THF; (h) MeCOC(=N₂)P(=O)(OEt)₂, K₂CO₃, MeOH; (i) DPPA, Et₃N, BnOH, PhMe; (j) NaH, 3-bromopropyne, THF.

were obtained from 26^{15} and 30^{16} by Wittig olefination, reduction with DIBAH and reaction with diethyl 1-diazo-2-oxopropylphosphonate.¹⁷ A nitrogen atom containing enyne (11) was synthesized from 36^{18} by Curtius rearrangement and propargylation.

With *exo*-cyclic enynes (1-11) in hand, intramolecular reaction of an alkyne–cobalt complex bearing *exo*-cyclic olefins (1-11) was performed by the following methods although there are many methods¹⁹ for the reaction as a convenient treatment; treatment with NMO (*N*-methylmorpholine *N*-oxide)^{19a} in CH₂Cl₂ at rt (Method A); refluxing in benzene with TMANO (trimethylamine *N*-oxide)^{19b} (Method B); refluxing in benzene (Method C); refluxing in toluene (Method D). The results are shown in Table 1.

At first, we investigated the reaction of 1-(3-butynyl)-2methylenecyclohexane (1). The reaction by Methods A-C smoothly proceeded stereoselectively to give the desired angular tricyclic compound (12), which constitutes the 6-5-5 ring system, in 66-81% yield (runs 1-3). To the best of our knowledge, this is the first synthesis of angular type 6–5–5 ring system by intramolecular Pauson–Khand reaction. The reaction of 1-(3-butynyl)-1-methyl-2methylenecyclohexane (2) afforded 13, which has two continuous quaternary carbon centers, in 57-85% yield (runs 4-6). Stereochemistry of 13 was confirmed by NOE experiment between Me group (δ 0.77) and C₂-H (δ 2.10). Plausible reaction mechanisms on the formation of 13 from 2 are depicted in Scheme 3. The reaction of 2 with $Co_2(CO)_8$ gives a cobalt-complex, the preferable conformation of which would be 2a by the 1,3-allylic strain. Then, 2a

would produce (1R,8S)-13, stereoselectively. On the basis of the reaction mechanism, stereochemistry of other angular tricyclic products was estimated. Kundensen and Shore have reported^{5a,b} that intramolecular Pauson-Khand reaction of endo-cyclic tetra-substituted olefin could not give the desired product bearing two continuous quaternary carbon centers, which was attributed to steric hindrance of tetra-substituted olefins. Therefore, the present reaction offers practical method for construction of such product.⁸ Similarly, 1-(3-butynyl)-1-methyl-2-methylenecyclopentane (3) furnished triquinane (14) in 89% yield by Method B (run 7). Functionalized enynes (4, 5) gave the corresponding tricyclic compounds (15, 16) in 50–86% yield (runs 8–10). The reaction of tri-substituted olefin (6) afforded 17 as a sole stereochemical product in low yield with amine N-oxide (Methods A and B), however, in 49% yield under refluxing in benzene (Method C) and in 53% yield in toluene (Method D) (runs 11–14).²⁰ Stereochemistry of **17** was determined by NOE experiment between two Me groups attached to C2 (δ 0.90) and C₈ (δ 1.28). Similarly, the reaction of substituted alkyne (7) gave tricyclic compound (18) in 32% yield by Method C, and in 63% yield by Method D (runs 17 and 18). This remarkable temperature effect suggested that the transition state in the reaction of hindered envnes (6, 7)would require high activation energy. Synthesis of various angular aza- and oxa-tricyclic compounds (19-22) from enynes (8-11) was also successful in good yield (runs 19-29).

We next carried out the reaction of homologues (40, 44) of *exo*-cyclic engnes (2, 3), in order to examine the possibility of formation of 6-6-5 and 5-6-5 tricyclic systems by the

Table 1. Intramolecular Pauson-Khand reaction of various exocyclic olemns bearing alkylivi gro	Table 1	. Intramolecular	Pauson-Khand	I reaction of	various ex	ocvelic olefins	bearing alkynyl	group
---	---------	------------------	--------------	---------------	------------	-----------------	-----------------	-------

Run	Substrate	Method ^a	Time(h)	Product((%) ^b	Run	Substrate	Method ^a	Time(h)	Product	t(%) ^b
	H						Me	Me	Me 0		-Me
1 2 3	(±)- 1	A B C	2 3 1	п (±)- 12 О	71 66 81	15 16 17 18	(±)- 7	A B C D	13 8 6 6	(±)- 18	27 36 32 63
(4	Me (<i>S</i>)- 2	A	3 (Me 1 <i>R</i> ,8 <i>S</i>)-13	57	10	O H	#			
5 6	∬ Me //	B C	2 2	0	85 74	19 20 21	(±)- 8	A B C	3 2 3	H (±)- 19	65 67 71
\ 7	(<i>R</i>)-3	В	2 (Mē (1 <i>S</i> ,8 <i>R</i>)-14	8 9		O Me	1			>
		///	0₹		/Ie) >	22 23 24	(±)- 9	A B C	2 2 3	Me (±)- 20	73 43 68
8		B /// Et	4 (86		H NTs				
9 10 N	(S)-5	A C	3 3 ((1S,8R)-10	6 50 73	25 26 27	(±)-10	A B C ≥ 2Bn	1 2 2		88 48 77
11 12 13 14	(\pm) -6 (E/Z = 18/2)	A 82) B C D	2 3 2 2	(±)- 17	22 25 49 53	28 29	(±)- 11	A C	2 2	√N MeCO₂E (±)- 22	³ⁿ 80 80

^a See text.

^b Isolated yield.

intramolecular Pauson–Khand reaction (Scheme 4). Thus, 1-methyl-2-methylene-1-(4-pentynyl)cyclo-hexane (40) and -pentane (44) were prepared from alcohol $(38)^{21}$ and ester (27) in several steps. However, the reaction of 40 and 44 by both Methods A and C did not afford the desired tricyclic compounds (41, 45) at all, although formation of alkyne–cobalt complex was detected on TLC. These results mean that a conformation in transition state would play an important role. For confirming the assumption, we also synthesized enyne (48) having a rigid conformation due to an aromatic ring by Wittig olefination of 46^{22} followed by Pd-mediated coupling with trimethylsilylacetylene and desilylation.²³ Gratifyingly, the reaction of **48** by Method D gave a new desired angular tetracyclic compound (**49**), although in low yield (11.3%). These results indicated that conformational change of the substrate would be an important factor to occur in the Pauson–Khand reaction of *exo*-cyclic enynes.

Finally, we examined to synthesize 6-5-5 and 6-5-6 tricyclic compounds by intramolecular Pauson–Khand reaction of *endo*-cyclic enynes (**52**, **55**) (Scheme 5). Thus,

Scheme 3.

 $\begin{array}{l} \textbf{Scheme 4.} (a) \ PPh_3, I_2, Py, CH_2Cl_2; (b) \ HC \blacksquare CLi(en), DMSO-Et_2O; (c) \ LiAIH_4, THF; (d) \ MeBr \cdot PPh_3, t-BuOK, THF; (e) \ TMSC \blacksquare CH, PdCl_2(PPh_3)_2, CuI, Et_3N, CH_2Cl_2, TBAF, THF. \end{array}$

Scheme 5. (a) PPh₃, I₂, Py, CH₂Cl₂; (b) HC=CLi(en), DMSO-Et₂O; (c) TMSC=CCH₃, BuLi, THF; (d) NaOH, MeOH, H₂O.

enyne (52) was prepared from 50 in the usual manner as described above. Propargylation²⁴ of iodide (51) with trimethylsilypropynyllithium afforded propadiene (53) and enyne (54) in 15 and 85% yield, respectively. Desilylation²³ of 54 gave 55 in 94% yield. The reaction of both enynes (52, 55) by Methods A and C did not produce the desired tricyclic compounds (56, 57) at all. At this stage, the reason why desired compounds could not be formed was uncertain.

3. Conclusions

In summary, we have investigated intramolecular Pauson– Khand reaction of *exo-* and *endo-*cyclic enynes. Feature of the present reaction is as follows: (1) 6-5-5 and 5-5-5type angular tricyclic skeletons including continuous quaternary centers were constructed by the reaction of *exo-*cyclic enynes (1–11) in good to high yield; (2) cyclization of homologues (40, 44) of enynes (2, 3) did not afford the desired tricyclic compound, except for the reaction of enyne (48) containing an aromatic ring; (3) under conditions similar to those noted for *exo*-cyclic enynes, the reaction of *endo*-cyclic enynes (52, 55) did not give 6-5-5 and 5-6-5type angular tricyclic compounds at all. Thus, intramolecular Pauson–Khand reaction of *exo*-cyclic enynes offers a convenient preparation of angular type 6-5-5 and 6-6-5tricyclic compounds, which could not be synthesized from *endo*-cyclic enynes. Furthermore, it is noteworthy that the present reaction is effective for construction of contiguous quaternary centers, which is difficult in the reaction of *endo*cyclic olefins.⁸

4. Experimental

4.1. General

All melting and boiling points were measured on a Büchi or a Yanagimoto (hot plate) melting point apparatus and by bulb-to-bulb distillation apparatus, and are uncorrected. IR spectra were obtained with a Hitachi 260-10 spectrophotometer or JASCO FT/IR-400. ¹H and ¹³C NMR spectra were taken with a JEOL EX-270 (270 MHz for ¹H NMR and 67.5 MHz for ¹³C NMR) spectrometer in CDCl₃ solution with tetramethylsilane as an internal standard. Mass spectra were measured on a Hitachi M-80 or a JEOL JMS D-300 spectrometer. Column chromatography was performed over silica gel (Wako gel C-200 or Merck Kiegelsel 60). Preparative TLCs were run on Merck 5744, or Merck 5715 plates. Organic extracts were dried over MgSO₄, unless otherwise indicated.

4.2. General procedure for conversion of alcohols (23, 38, 42, 50) to iodides (24, 39, 43, 51)

To a stirred solution of alcohol (1 equiv.), PPh₃ (1.2 equiv.), and pyridine (1.9 equiv.) in CH_2CI_2 (8 mL per 1 mmol of alcohol) at 0°C was added I₂ (1.2 equiv.) in one portion. After being stirred for 0.5 h, the mixture was washed with 1 M aqueous HCl, 10% aqueous Na₂S₂O₃, saturated aqueous NaHCO₃, and brine, in order. The organic layer was dried and evaporated in vacuo to give a residue, which was purified by column chromatography (hexane) to furnish the corresponding iodide.

4.2.1. (±)-1-(2-Iodoethyl)-2-methylenecyclohexane (24). From **23** (3.50 g, 25 mmol), **24** (5.05 g, 80.0%) was obtained as a colorless oil; ¹H NMR δ 4.70, 4.61 (each 1H, s), 3.14–3.26 (2H, m), 1.24–2.27 (11H, m); IR 2928, 2854, 1643 cm⁻¹; MS *m*/*z* 250 (M⁺); high-resolution mass *m*/*z* calcd for C₉H₁₅I (M⁺) 250.0219, found: 250.0230.

4.2.2. (*S*)-1-(3-Iodopropyl)-1-methyl-2-methylenecyclohexane (39). From 38 (1.352 g, 8.05 mmol), 39 (2.004 g, 89.6%) was obtained as a colorless oil; $[\alpha]_D{}^{32}=-57.5^\circ$ (*c* 1.15, CHCl₃); ¹H NMR δ 4.71, 4.58 (each 1H, s), 3.17 (2H, t, *J*=6.6 Hz, H), 2.10–2.19 (2H, m), 1.41–1.81 (7H, m), 1.20–1.40 (3H, m), 1.02 (3H, s); IR 2925, 2854, 1637 cm⁻¹; MS *m*/*z* 278 (M⁺); high-resolution mass *m*/*z* calcd for C₁₁H₁₉I (M⁺) 278.0531, found: 278.0527.

4.2.3. (R)-1-(3-Iodopropyl)-1-methyl-2-methylenecyclo-

pentane (43). From 42 (0.581 g, 3.78 mmol), 43 (0.916 g, 92.0%) was obtained as a colorless oil: $[\alpha]_{\rm D}^{29} = +42.0^{\circ}$ (c

92.0%) was obtained as a colorless oil; $[\alpha]_D^{29} = +42.0^{\circ}$ (*c* 1.06, CHCl₃); ¹H NMR δ 4.85, 4.69 (each 1H, s), 3.16 (2H, t, *J*=6.9 Hz), 2.33–2.41 (2H, m), 1.73–1.87 (2H, m), 1.39–1.67 (6H, m), 1.03 (3H, s); IR 1740, 1690, 1680 cm⁻¹; MS *m*/*z* 264 (M⁺); high-resolution mass *m*/*z* calcd for C₁₀H₁₇I (M⁺) 264.0375, found: 264.0380.

4.2.4. 1-(3-Iodopropyl)cyclohexene (**51**). From **50** (0.420 g, 3.0 mmol), **51** (0.600 g, 80.0%) was obtained as a colorless oil; ¹H NMR δ 5.45 (1H, brs), 3.16 (2H, t, *J*=6.8 Hz), 1.86–2.05 (8H, m), 1.49–1.66 (4H, m); IR 2924, 1437 cm⁻¹; EI MS *m*/*z* 250 (M⁺); high-resolution mass *m*/*z* calcd for C₉H₁₅I (M⁺) 250.0219, found: 250.0222.

4.3. General procedure for conversion of iodides (24, 39, 43, 51) to acetylenes (1, 40, 44, 52)

To a stirred suspension of lithium acetylide ethylenediamine complex (1.4 equiv.) in DMSO (1 mL per 1 mmol of iodide) and Et_2O (1 mL per 1 mmol of iodide) at 5°C under argon was added a solution of iodide (1 equiv.) in Et_2O (0.25 mL per 1 mmol of iodide). After being stirred for 0.5 h, the reaction was quenched with water. The mixture was extracted with Et_2O . The organic layer was washed with brine and dried. Usual work-up followed by column chromatography (pentane) afforded the corresponding acetylene.

4.3.1. (±)-1-(3-Butynyl)-2-methylenecyclohexane (1). From **24** (5.05 g, 20 mmol), **1** (2.40 g, 80.3%) was obtained as a colorless oil; bp 140°C/60 mmHg; ¹H NMR δ 4.68, 4.59 (each 1H, s), 1.93 (1H, t, *J*=2.6 Hz), 1.27–2.23 (13H, m); IR 3311, 2931, 2856, 2118, 1645, 1446 cm⁻¹; MS *m*/*z* 148 (M⁺); high-resolution mass *m*/*z* calcd for C₁₁H₁₆ (M⁺) 148.1252, found: 148.1244.

4.3.2. (*S*)-1-Methyl-2-methylene-1-(4-pentynyl)cyclohexane (40). From 39 (1.974 g, 7.1 mmol), 40 (1.097 g, 87.8%) was obtained as a colorless oil; bp 160°C/15 mmHg; $[\alpha]_D^{27} = -80.0^{\circ}$ (*c* 1.07, CHCl₃); ¹H NMR δ 4.70, 4.59 (each 1H, s), 2.11–2.19 (4H, m), 1.94 (1H, t, *J*=2.6 Hz), 1.22–1.85 (10H, m), 1.01 (3H, s); IR 3311, 2933, 2856, 1637, 1450 cm⁻¹; MS *m*/*z* 176 (M⁺); high-resolution mass *m*/*z* calcd for C₁₃H₂₀ (M⁺) 176.1565, found: 176.1575.

4.3.3. (*R*)-1-Methyl-2-methylene-1-(4-pentynyl)cyclopentane (44). From 43 (0.863 g, 3.3 mmol), 44 (0.451 g, 85.3%) was obtained as a colorless oil; bp 140°C/ 16 mmHg; $[\alpha]_D^{29} = +48.4^{\circ}$ (*c* 1.06, CHCl₃); ¹H NMR δ 4.85, 4.69 (each 1H, s), 2.34–2.40 (2H, m), 2.16 (2H, dt, J=2.6, 6.6 Hz), 1.94 (1H, t, J=2.6 Hz), 1.39–1.68 (8H, m), 1.03 (3H, s); IR 3310, 2951, 2118, 1650 cm⁻¹; MS *m/z* 161 (M⁺-1); high-resolution mass *m/z* calcd for C₁₂H₁₇ (M⁺-1) 161.1296, found: 161.1313.

4.3.4. 1-(4-Pentynyl)cyclohexene (52). From **51** (0.500 g, 2.0 mmol), **52** (0.224 g, 75.8%) was obtained as a colorless oil; bp 140°C/60 mmHg; ¹H NMR δ 5.42 (1H, s), 2.16 (2H, dt, *J*=2.6, 7.1 Hz), 1.91–2.05 (6H, m), 1.94 (1H, t, *J*=2.6 Hz), 1.52–1.68 (6H, m); IR 3311, 2931, 2119, 1439 cm⁻¹; EI MS *m*/*z* 148 (M⁺); high-resolution mass *m*/*z* calcd for C₁₁H₁₆ (M⁺) 148.1255, found: 148.1252.

4.4. General procedure for Wittig reaction of ketones (25, 29, 30, 33, 34, 46)

A suspension of PPh₃·MeBr and *t*-BuOK in THF was stirred for 10 min at rt. To this mixture was added a solution of ketone (1 equiv.) in THF over a period of 3 min. After being stirred, the reaction was quenched with water. The mixture was extracted with Et_2O . The extracts were washed with brine and dried. Usual work-up followed by column chromatography or bulb-to-bulb distillation gave the corresponding *exo*-olefin.

4.4.1. (*S*)-1-(3-Butynyl)-1-methyl-2-methylenecyclohexane (2). PPh₃·MeBr (4.30 g, 12.0 mmol), *t*-BuOK (1.35 g, 12.0 mmol) in THF (40 mL), and **25** (0.984 g, 6.0 mmol) in THF (10 mL) were used (reaction time: 1 h). Column chromatography (hexane) gave **2** (0.877 g, 90.2%) as a colorless oil; $[\alpha]_D^{24} = +116.1^\circ$ (*c* 1.07, CHCl₃); ¹H NMR δ 4.74, 4.59 (each 1H, s), 1.93 (1H, t, *J*=2.4 Hz), 1.91–2.14 (5H, m), 1.22–1.76 (7H, m), 1.01 (3H, s); ¹³C NMR δ 153.8, 107.6, 85.5, 67.7, 40.4, 39.2, 36.4, 33.1, 28.4, 25.2, 21.9, 13.5; IR 3311, 2931, 2856, 2119, 1637, 1450 cm⁻¹; MS *m*/*z* 162 (M⁺); high-resolution mass *m*/*z* calcd for C₁₂H₁₈ (M⁺) 162.1407, found: 162.1405.

4.4.2. (S)-6-(3-Butynyl)-6-methyl-7-methylene-1,4-dioxaspiro[4.5]decane (4). PPh₃·MeBr (0.380 g, 1.06 mmol), t-BuOK (0.119 g, 1.06 mmol) in THF (3 mL), and 29 (0.118 g, 0.53 mmol) in THF (2 mL) were used (reaction time: 24 h). Column chromatography (hexane/ AcOEt=20:1) gave 4 (0.048 g, 41.1%) as colorless crystals; mp 80–82°C; $[\alpha]_D^{24} = -57.8^{\circ}$ (c 1.32, CHCl₃); ¹H NMR δ 4.91 (1H, d, J=1 Hz), 4.72 (1H, d, J=1.3 Hz), 3.88-4.00 (4H, m), 2.14-2.20 (2H, m), 1.43-2.01 (9H, m), 1.02 (3H, s); ¹³C NMR δ 150.6, 112.9, 110.7, 85.2, 67.9, 65.2, 65.1, 49.1, 33.6, 31.7, 30.2, 23.4, 15.5, 13.4; MS *m*/*z* 220 (M⁺); high-resolution mass m/z calcd for $C_{14}H_{20}O_2$ (M⁺) 220.1463, found: 220.1470.

4.4.3. (*R*)-2-(1-*tert*-Butoxycarbonyl)ethyl-1-ethoxycarbonyl-2-methylenecyclohexane (31). PPh₃·MeBr (10.75 g, 30.1 mmol) and *t*-BuOK (3.36 g, 30.0 mmol) in THF (250 mL), and **30** (5.96 g, 20 mmol) were used (reaction time: 1 h). Column chromatography (hexane/AcOEt=5:1) gave **31** (5.41 g, 91.4%) as a colorless oil; bp 170°C/ 30 mmHg; $[\alpha]_{D}^{29}$ =+43.7° (*c* 1.04, CHCl₃); ¹H NMR δ 4.90, 4.77 (each 1H, s), 4.17 (2H, q, *J*=7.1 Hz), 1.87–2.35 (8H, m), 1.53–1.72 (3H, m), 1.44 (9H, s), 1.36–1.44 (1H, m), 1.26 (3H, t, *J*=7.1 Hz); IR 2980, 2935, 2860, 1728, 1643, 1448 cm⁻¹; MS *m*/*z* 296 (M⁺); high-resolution mass *m*/*z* calcd for C₁₇H₂₈O₄ (M⁺) 296.1988, found: 296.1978.

4.4.4. (±)-2-Methylene-1-propargyloxycyclohexane (8). PPh₃·MeBr (3.929 g, 11.0 mmol), *t*-BuOK (1.209 g, 10.7 mmol) in THF (50 mL), and **33** (0.761 g, 5.0 mmol) in THF (4 mL) were used (reaction time: 1 h); **8** (0.595 g, 79.2%) was obtained as a colorless oil; bp 140°C/14 mmHg; ¹H NMR δ 4.87, 4.86 (each 1H, s), 4.17, 4.00 (each 1H, dd, J=2.3, 15.6 Hz), 3.98 (1H, t, J=3.3 Hz), 2.39 (1H, t, J=2.3 Hz), 2.25 (1H, ddd, J=4.3, 9.6, 13.3 Hz), 2.06 (1H, dt, J=5, 13.3 Hz), 1.58–1.85 (4H, m), 1.39–1.55 (2H, m); IR 2935, 2858, 2118, 1650 cm⁻¹; MS *m/z* 150 (M⁺); highresolution mass m/z calcd for $C_{10}H_{14}O$ (M⁺) 150.1044, found: 150.1043.

4.4.5. (±)-1-Methyl-2-methylene-1-propargyloxycyclohexane (9). PPh₃·MeBr (7.86 g, 22.0 mmol), *t*-BuOK (2.40 g, 21.4 mmol) in THF (100 mL), and **34** (1.660 g, 10 mmol) in THF (12 mL) were used (reaction time: 1 h). Column chromatography (hexane then hexane/AcOEt=10:1) gave **9** (1.05 g, 64.0%) as a colorless oil; bp 150°C/15 mmHg; ¹H NMR δ 4.95, 4.85 (each 1H, s), 3.95, 3.86 (each 1H, dd, *J*=2.3, 15.2 Hz), 2.37 (1H, t, *J*=2.3 Hz), 2.10–2.28 (2H, m), 1.71–1.95 (3H, m), 1.22–1.57 (3H, m), 1.31 (3H, s); IR 2940, 1643 cm⁻¹; MS *m/z* 164 (M⁺); high-resolution mass *m/z* calcd for C₁₁H₁₆O (M⁺) 164.1201, found: 164.1191.

4.4.6. (±)-1-Ethoxycarbonyl-1-(2-iodobenzyl)-2-methylenecyclohexane (47). PPh₃·MeBr (1.68 g, 4.6 mmol), *t*-BuOK (0.505 g, 4.5 mmol) in THF (40 mL), and 46 (1.16 g, 3.0 mmol) were used (reaction time: 3 h). Column chromatography (hexane/AcOEt=30:1) gave 47 (0.985 g, 85.5%) as colorless crystals; mp 85–86°C; ¹NMR δ 7.83 (1H, dd, *J*=1.3, 7.9 Hz), 7.20 (1H, dd, *J*=1.3, 7.9 Hz), 7.06 (1H, dd, *J*=1.6, 7.9 Hz), 6.87 (1H, dt, *J*=1.6, 7.9 Hz), 5.00, 4.97 (each 1H, s), 4.15 (2H, q, *J*=7.1 Hz), 3.42, 3.22 (each 1H, d, *J*=14.2 Hz), 2.34–2.41 (1H, m), 2.00–2.12 (2H, m), 1.28–1.77 (5H, m), 1.20 (3H, t, *J*=7.1 Hz); MS *m*/*z* 384 (M⁺); high-resolution mass *m*/*z* calcd for C₁₇H₂₁IO₂ (M⁺) 384.0497, found: 384.5013.

4.4.7. (±)-1-(3-Butynyl)-2-ethylidene-1-methylcyclohexane (6). A suspension of PPh₃·EtBr (2.251 g, 6.06 mmol) and t-BuOK (0.676 g, 6.00 mmol) in THF (25 mL) was stirred for 5 min at rt. To this mixture was added a solution of 25 (0.492 g, 3.0 mmol) in THF (7 mL) over a period of 2 min. After being stirred for 24 h, similar work-up as described above gave a residue, which was purified by column chromatography (hexane) to afford 6 (0.321 g, 60.9%) as a colorless oil; bp 170°C/25 mmHg; ¹H NMR δ 5.30 (0.82H, q, J=7.3 Hz, olefinic H), 5.16 (0.18H, q, J=6.7 Hz, olefinic H), 1.71 (2.46H, dd, J=1.8, 7.3 Hz, CHMe), 1.59 (0.54H, dd, J=1.3, 6.7 Hz, CHMe), 1.95-2.56 (5H, m), 1.92 (1H, t, J=2.5 Hz), 1.25-1.68 (7H, m), 1.23 (3H, s); IR 3311, 2926, 2864, 2119, 1466, 1450 cm⁻¹; MS m/z 176 (M⁺); high-resolution mass m/z calcd for $C_{13}H_{20}$ (M⁺) 176.1564, found: 176.1577.

4.4.8. (±)-1-Methyl-2-methylene-1-(3-pentynyl)cyclohexane (7). To a stirred suspension of 2 (0.324 g, 2.0 mmol) in THF (8 mL) was added at 0°C BuLi (1.8 mL, 2.9 mmol, 1.6 M in hexane). After being stirred for 10 min, MeI (160 μ L, 2.6 mmol) was added. The mixture was stirred for 0.5 h. The reaction was quenched with water and extracted with hexane. Usual work-up afforded 7 (0.321 g, 91.2%) as a colorless oil; bp 160°C/ 40 mmHg; ¹H NMR δ 4.71, 4.57 (each 1H, s), 1.84–2.15 (5H, m), 1.76 (3H, t, *J*=2.3 Hz), 1.22–1.73 (7H, m), 0.99 (3H, s); IR 2928, 1637, 1448 cm⁻¹; MS *m/z* 176 (M⁺); high-resolution mass *m/z* calcd for C₁₃H₂₀ (M⁺) 176.1564, found: 176.1563.

4.4.9. (*R*)-1-(2-Methoxycarbonyl)ethyl-1-methyl-2-methylenecyclopentane (27). To a stirred mixture of Zn (3.704 g, 56.7 mmol) and CH₂Br₂ (3.422 g, 19.1 mmol) in THF (100 mL) at rt under argon was added TiCl₄ (13.8 mL, 13.8 mmol, 1 M in CH₂Cl₂). After being stirred for 15 min, the mixture was cooled to 0°C and a solution of 26 (90% ee, 2.35 g, 12.8 mmol) in CH₂Cl₂ (10 mL) was added. After being stirred for 1.5 h, the reaction was diluted with hexane (50 mL). Then, a solution of Na₂CO₃ (24 g) in H₂O (15 mL) was added to the mixture. The precipitate was filtered through Celite 545 short pad. Usual work-up followed by column chromatography (hexane/AcOEt=20:1) gave **27** (1.23 g, 52.7%) as a color-less oil; bp 160–170°C/50 mmHg; $[\alpha]_D^{26}$ =+38.2° (c 1.06, CHCl₃); ¹H NMR δ 4.88, 4.70 (each 1H, s), 3.66 (3H, s), 2.25-2.43 (4H, m), 1.44-1.76 (6H, m), 1.03 (3H, s); IR 2954, 2871, 1743, 1650, 1452, 1434 cm⁻¹; MS *m/z* 182 (M^+) ; high-resolution mass m/z calcd for $C_{11}H_{18}O_2$ (M^+) 182.1307, found: 182.1300.

4.4.10. (*R*)-1-(2-Formyl)ethyl-1-methyl-2-methylenecyclopentane (28). To a solution of 27 (0.592 g, 3.0 mmol) in toluene (15 mL) was added at -78° C under argon DIBAH (3 mL, 3 mmol, 1 M in toluene). After being stirred for 2 h, the reaction was quenched with 3 M HCl. The mixture was extracted with CHCl₃. The extracts were washed with brine and dried. Usual work-up as noted above (hexane/AcOEt=10:1) afforded 27 (0.106 g, 19.4%) and 28 (0.310 g, 68.0%) as a colorless oil; ¹H NMR δ 9.77 (1H, t, *J*=1.9 Hz), 4.89 (1H, t, *J*=2 Hz), 4.70 (1H, t, *J*=2.3 Hz), 2.34–2.45 (4H, m), 1.48–1.74 (6H, m), 1.04 (3H, s); IR 2956, 1726, 1650 cm⁻¹; MS *m/z* 152 (M⁺); high-resolution mass *m/z* calcd for C₁₀H₁₆O (M⁺) 152.1201, found: 152.1200.

4.4.11. (*R*)-1-Methyl-2-methylene-1-propargylclopentane (3). To a stirred suspension of **28** (0.674 g, 3.81 mmol) and K₂CO₃ (1.055 g, 7.64 mmol) in MeOH (50 mL) was added at rt diethyl 1-diazo-2-oxopropylphosphonate (0.861 g, 4.57 mmol) in one portion. After being stirred for 3 h, the reaction was diluted with Et₂O. The mixture was washed with saturated aqueous NaHCO₃ and brine, successively. Usual work-up afforded **3** (0.291 g, 51.7%) as a colorless oil; bp 135°C/60 mmHg; ¹H NMR δ 4.88, 4.69 (each 1H, s), 1.92 (1H, t, *J*=2.6 Hz), 2.32–2.42 (2H, m), 2.10–2.22 (2H, m), 1.20–1.44 (6H, m), 1.01 (3H, s); MS *m/z* 148 (M⁺); high-resolution mass *m/z* calcd for C₁₁H₁₆ (M⁺) 148.1252, found: 148.1248.

4.4.12. (*R*)-1-Ethoxycarbonyl-1-(2-formyl)ethyl-2-methylenecyclohexane (32). To a solution of 31 (0.592 g, 2.0 mmol) in THF (15 mL) was added at -78° C under argon DIBAH (3 mL, 3 mmol, 1 M in toluene). After being stirred for 2 h, the reaction was quenched with 3 M HCl. The mixture was extracted with CHCl₃. Work-up as noted above (hexane/AcOEt=10:1) afforded 32 (0.145 g, 32.4%) and 31 (0.347 g, 58.7%) as a colorless oil; ¹H NMR δ 9.78 (1H, t, *J*=1.2 Hz), 5.91, 4.73 (each 1H, s), 4.16 (2H, q, *J*=7 Hz), 1.90–2.65 (8H, m), 1.40–1.79 (4H, m), 1.26 (3H, t, *J*=7 Hz); IR 2930, 1748, 1643 cm⁻¹; MS *m/z* 224 (M⁺); high-resolution mass *m/z* calcd for C₁₃H₂₀O₃ (M⁺) 224.1409, found: 224.1413.

4.4.13. (*R*)-1-(3-Butynyl)-1-ethoxycarbonyl-2-methylenecyclohexane (5). To a stirred suspension of 32 (0.145 g, 0.65 mmol) and K₂CO₃ in MeOH (10 mL) was added at rt diethyl 1-diazo-2-oxopropylphosphonate (0.166 g, 0.75 mmol) in one portion. After being stirred for 2.5 h, the reaction was diluted with Et₂O. The mixture was washed with saturated aqueous NaHCO₃ and brine, successively. Usual work-up afforded **5** (0.080 g, 56.3%) as a colorless oil; bp 170°C/20 mmHg; $[\alpha]_D^{26} = +58.8^{\circ}$ (*c* 1.01, CHCl₃); ¹H NMR δ 4.91, 4.74 (each 1H, s), 4.17 (2H, q, *J*=7.1 Hz), 1.96 (1H, t, *J*=2.5 Hz), 1.83–2.31 (6H, m), 1.30–1.74 (6H, m), 1.26 (3H, t, *J*=7.1 Hz); IR 3292, 2937, 2858, 2119, 1727, 1643, 1448 cm⁻¹; MS *m/z* 220 (M⁺); high-resolution mass *m/z* calcd for C₁₄H₂₀O₂ (M⁺) 220.1463, found: 220.1463.

(±)-2-Methylene-1-(propargylamino)-N-tosyl-4.4.14. cyclohexane (10). To a stirred mixture of Zn (0.882 g, 13.5 mmol) and CH_2Br_2 (0.791 g, 4.55 mmol) in THF (25 mL) at rt under argon was added TiCl₄ (3.3 mL, 3.3 mmol, 1 M in CH₂Cl₂). After being stirred for 15 min, 35 (0.9150 g, 3.0 mmol) was added in one portion and the mixture was stirred for 5 h. The mixture was diluted with Et₂O and washed with 1 M HCl, and brine, successively. Work-up as noted above (hexane/AcOEt=3:1) afforded 10 (0.230 g, 25.3%) as crystals; mp 111–112°C; ¹H NMR δ 7.82, 7.27 (each 2H, d, J=8.6 Hz), 4.78, 4.63 (each 1H, s), 4.38, 3.87 (each 1H, dd, J=2.3, 18.5 Hz), 4.28-4.38 (1H, m), 2.42 (3H, s), 2.11 (1H, t, J=2.3 Hz), 1.98-2.08 (1H, m), 1.16-1.90 (7H, m); IR 3307, 2941, 2862, 1650, 1599, 1448 cm⁻¹; MS *m/z* 303 (M⁺); high-resolution mass m/z calcd for C₁₇H₂₁NO₂S (M⁺) 303.1293, found: 303.1290.

4.4.15. (±)-**1-Benzyloxycarbonylamino-1-methyl-2-methyl-enecyclohexane (37).** A solution of **36** (1.00 g, 6.5 mmol), DPPA (1.86 g, 6.8 mmol), Et₃N (0.712 g, 7.0 mmol), and benzyl alcohol (0.90 g, 8.3 mmol) in toluene (40 mL) was refluxed for 6 h. After the solvent was removed in vacuo, the residue was purified by column chromatography (hexane/AcOEt=5:1) to afford **37** (0.656 g, 39.0%) as a colorless oil; ¹H NMR δ 7.35 (5H, s), 5.08, 5.03 (each 1H, d, *J*=12.9 Hz), 4.87, 4.85 (each 1H, s), 4.76 (1H, brs), 2.04–2.39 (3H, m), 1.49 (3H, s), 1.34–1.72 (5H, m); IR 3350, 2935, 2858, 1724, 1498 cm⁻¹; MS *m/z* 259 (M⁺); high-resolution mass *m/z* calcd for C₁₆H₂₁NO₂ (M⁺) 259.1571, found: 259.1552.

4.4.16. (±)-1-(*N*-Benzyloxycarbonylpropargylamino)-1methyl-2-methylenecyclohexane (11). To a mixture of NaH (0.060 g, 1.5 mmol) in DMF (3 mL) at 0°C under argon was added a solution of 37 (0.259 g, 1.0 mmol) in DMF (2 mL). After being stirred for 1 h, propargyl bromide (0.104 g, 1.2 mmol) was added and the mixture was stirred for 3 h at rt. Then, the reaction was quenched with water. The mixture was extracted with Et₂O. The extracts were washed with brine and dried (K_2CO_3). Work-up as noted above (hexane/AcOEt=20:1) afforded **11** (0.160 g, 54.0%) as a colorless oil; ¹H NMR δ 7.30–7.43 (5H, m, Ph), 5.19, 5.14 (each 1H, d, J=13.2 Hz), 4.93, 4.91 (each 1H, s), 4.15, 3.38 (each 1H, dd, J=2.3, 17.8 Hz), 3.04–3.10 (1H, m), 2.17 (1H, t, J=2.3 Hz), 2.08-2.28 (2H, m), 1.71-1.79 (1H, m), 1.50 (3H, s), 1.15–1.57 (4H, m); IR 3302, 2935, 2858, 1709, 1444 cm⁻¹; MS m/z 297 (M⁺); high-resolution mass m/z calcd for C₁₉H₂₃NO₂ (M⁺) 297.1728, found: 297.1730.

4.4.17. (*R*)-1-(3-Hydroxypropyl)-1-methyl-2-methylenecyclopentane (42). To a stirred solution of 27 (0.876 g, 4.81 mmol) in THF (15 mL) at 0°C was added LiAlH₄ (0.183 g, 4.82 mmol) in small portions. After being stirred for 1 h, the reaction was quenched with saturated aqueous Na₂SO₄. The precipitate was filtered off and the filtrate was dried and evaporated under reduced pressure to give 42 (0.706 g, 95.2%) as a colorless oil; bp 180–190°C/ 30 mmHg; $[\alpha]_D^{29}$ =+42.1° (*c* 1.06, CHCl₃); ¹H NMR δ 4.85, 4.69 (each 1H, s), 3.62 (2H, t, *J*=6.4 Hz), 2.34–2.42 (2H, m), 1.26–1.64 (8H, m), 1.03 (3H, s); IR 3334, 2952, 2870, 1650, 1456, 1432 cm⁻¹; MS *m/z* 154 (M⁺); highresolution mass *m/z* calcd for C₁₀H₁₈O (M⁺) 154.1358, found: 154.1355.

4.4.18. (±)-1-Ethoxycarbonyl-1-(2-ethynylbenzyl)-2-methylenecyclohexane (48). A mixture of 47 (0.768 g, 2.0 mmol), trimethylsilylacetylene (0.34 mL, 2.4 mmol), Et₃N (10 mL), CuI (0.004 g, 0.02 mmol), and $PdCl_2(PPh_3)_2$ (0.028 g, 0.04 mmol) in CH₂Cl₂ (1 mL) was stirred for 1 h at rt. The mixture was washed with saturated aqueous NaHCO₃, brine, successively, and dried. Work-up as noted above (AcOEt/hexane=1:30) afforded 1-ethoxycarbonyl-1-(2trimthylsilylethynylbenzyl)-2-methylenecyclohexane (0.705 g, 99.5%) as colorless crystals; ¹H NMR δ 7.39 (1H, dd, J=1.7, 7.3 Hz), 7.12-7.30 (2H, m), 6.97 (1H, dd, J=1.7, 7.3 Hz), 4.97, 4.95 (each 1H, s), 4.96 (2H, q, J=7.1 Hz), 3.40, 3.27 (each 1H, d, J=13.2 Hz), 2.30-2.40 (1H, m), 1.91-2.00 (2H, m), 1.28-1.76 (5H, m), 1.17 (3H, t, J=7.1 Hz), 0.20 (9H, s). A solution of the 2-(trimethylsilylethynyl)benzyl product (0.531 g, 1.5 mmol) and TBAF (0.45 mL, 0.45 mmol) in THF (3 mL) was stirred for 1 h at rt. After the solvent was removed in vacuo, the residue was purified by column chromatography (hexane/ AcOEt=30:1) to afford 48 (0.413 g, 97.5%) as colorless crystals; mp 93–95°C; ¹H NMR δ 7.47 (1H, dd, J=1.7, 7.3 Hz), 7.16–7.23 (2H, m), 7.04 (1H, dd, J=1.7, 7.3 Hz), 5.00, 4.97 (each 1H, s), 4.13 (2H, q, J=7.1 Hz), 3.40, 3.30 (each 1H, d, J=13.5 Hz), 3.21 (1H, s), 2.34–2.41 (1H, m), 1.97-2.13 (2H, m), 1.32-1.76 (5H, m), 1.19 (3H, t, J=7.1 Hz; IR 3248, 2935, 2863, 1716, 1600 cm⁻¹; MS m/z 282 (M⁺); high-resolution mass m/z calcd for C₁₉H₂₂O₂ (M⁺) 282.1620, found: 282.1639.

4.4.19. 1-[3-(1-Trimethylsilylpropadienyl)propyl]- and **1-(5-pentynyl-6-trimethylsilyl)-cyclohexane (53 and 54).** To a stirred solution of 1-trimethylsilylpropyne (225 μ L, 1.5 mmol) in THF (4 mL) at 0°C under argon was added BuLi (0.90 mL, 1.39 mmol, 1.54 M in hexane). After being stirred for 30 min, a solution of **51** (0.250 g, 1.0 mmol) in THF (3 mL) was added and stirring was continued for additional 1 h. The reaction was quenched with water. The mixture was extracted with Et₂O. The organic extracts were washed with water, brine, successively, and dried. Work-up as noted above (pentane) to afford **53** (0.035 g, 15.0%) and **54** (0.199 g, 85.0%).

53: Oil; ¹H NMR δ 5.38 (1H, brs, olefinic H), 4.31 (2H, t, J=3.1 Hz), 1.87–2.00 (8H, m), 1.49–1.65 (6H, m), 0.08 (9H, s); EI MS m/z 234 (M⁺); high-resolution mass m/z calcd for C₁₅H₂₆Si (M⁺) 234.1804, found: 234.1803.

54: Oil; ¹H NMR δ 5.38 (1H, brs), 2.20 (2H, t, *J*=6.8 Hz),

1.83–2.01 (6H, m), 1.44–1.64 (8H, m), 0.13 (9H, s); EI MS m/z 234 (M⁺); high-resolution mass m/z calcd for C₁₅H₂₆Si (M⁺) 234.1804, found: 234.1800.

4.4.20. 1-(**4**-Pentynyl)cyclohexene (55). A mixture of **54** (0.199 g, 0.85 mmol) and 3 M NaOH (5 mL) in MeOH (5 mL) was stirred for 14 h at rt. The mixture was extracted with Et_2O . The organic extracts were washed with brine and dried. Usual work-up afforded **55** (0.130 g, 94.4%) as a colorless oil; bp 170°C/60 mmHg; ¹H NMR δ 5.30 (1H, brs, olefinic H), 2.14–2.23 (2H, m), 1.93 (1H, t, J=2.6 Hz), 1.85–2.00 (6H, m), 1.45–1.64 (8H, m); IR 3296, 2940, 2172 cm⁻¹; EI MS *m/z* 162 (M⁺); high-resolution mass *m/z* calcd for C₁₂H₁₈ (M⁺) 162.1409, found: 162.1411.

4.5. General procedures for Pauson–Khand reaction of exocyclic enynes

A mixture of enyne (1 equiv.) and $Co_2(CO)_8$ (1.1 equiv.) in CH_2Cl_2 , benzene or toluene was stirred for 1 h at rt. Method A: NMO (3 equiv.) was added to the mixture in three times at intervals of 15 min. The solvent was removed under reduced pressure to give a residue, which was diluted with Et_2O . The precipitate was removed by suction filtration through Celite 545 short pad. Method B: TMANO (3 equiv.) was added to the mixture and the mixture was refluxed for 2–4 h. Methods C and D: The mixture was refluxed for appropriate time. Purification of the products obtained by Methods A–D was carried out on preparative TLC.

4.5.1. (1*R*^{*},8*S*^{*})-**Tricyclo**[6.4.0.0^{1,5}]**dodec-4-en-3-one** (12). Oil; ¹H NMR δ 5.75 (1H, dd, *J*=1, 2.3 Hz), 2.52–2.82 (2H, m), 2.37, 2.11 (each 1H, d, *J*=17.5 Hz), 2.08–2.20 (1H, m), 1.09–1.95 (10H, m); ¹³C NMR δ 210.7, 195.6, 123.6, 52.9, 48.7, 41.9, 31.8, 26.8, 24.9, 24.5, 23.4, 19.6; IR 2926, 2858, 1709, 1626, 1456, 1410 cm⁻¹; MS *m*/*z* 176 (M⁺); high-resolution mass *m*/*z* calcd for C₁₂H₁₆O (M⁺) 176.1200, found: 176.1205.

4.5.2. (**1***R*,**8***S*)-8-Methyltricyclo[6.4.0.0^{1,5}]dodec-4-en-3one (13). Oil; $[\alpha]_D^{24} = -146.5^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR δ 5.77 (1H, t, *J*=1.7 Hz), 2.54–2.81 (2H, m), 2.43 (1H, dt, *J*=7.6, 12.2 Hz), 2.29, 2.10 (each 1H, d, *J*=17.8 Hz), 1.22–1.80 (9H, m), 0.77 (3H, s); ¹³C NMR δ 212.5, 196.5, 124.5, 57.6, 44.8, 41.0, 36.0, 35.6, 34.2, 26.1, 24.9, 24.5, 22.7; IR 2929, 2864, 1705, 1624, 1448, 1412 cm⁻¹; MS *m/z* 190 (M⁺); high-resolution mass *m/z* calcd for C₁₃H₁₈O (M⁺) 190.1357, found: 190.1358.

4.5.3. (1*S*,*SR*)-8-Methyltricyclo[6.3.0.0^{1,5}]undodec-4-en-3-one (14). Oil; $[\alpha]_D^{27} = +63.9^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR δ 5.73 (1H, dd, J=1, 2 Hz), 2.53–2.70 (2H, m), 2.48, 2.13 (each 1H, d, J=17.7 Hz), 1.61–2.06 (8H, m), 0.96 (3H, s); ¹³C NMR δ 211.4, 193.1, 122.9, 63.0, 49.4, 46.9, 42.0, 41.0, 40.6, 26.5, 24.5, 24.1; MS *m*/*z* 176 (M⁺); high-resolution mass *m*/*z* calcd for C₁₂H₁₆O (M⁺) 176.1201, found: 176.1205.

4.5.4. (**15,8S**)-9,9-Ethylenedioxy-8-methyltricyclo[6.4.0.0^{1,5}]dodec-4-en-3-one (**15**). Oil; $[\alpha]_D^{24} = -121.7^\circ$ (*c* 1.03, CHCl₃); ¹H NMR δ 5.77 (1H, dd, *J*=1.3, 2 Hz, olefinic H), 3.91–3.99 (4H, m, OCH₂CH₂O), 2.70–2.83 (1H, m), 2.40–2.67 (2H, m), 2.47, 2.15 (each 1H, d, J=18.2 Hz), 1.60–1.82 (6H, m), 1.12–1.17 (1H, m), 0.78 (3H, s, Me); 1³C NMR δ 211.9, 193.7, 124.5, 111.6, 65.6, 59.2, 48.5, 45.3, 34.9, 34.5, 30.8, 24.0, 22.2, 16.0; IR 2933, 2870, 1705, 1628 cm⁻¹; MS *m*/*z* 248 (M⁺); high-resolution mass *m*/*z* calcd for C₁₅H₂₀O₃ (M⁺) 248.1410, found: 248.1411.

4.5.5. (**1S**,**8***R*)-**8**-Ethoxycarbonyltricyclo[6.4.0.0^{1,5}]dodec-**4-en-3-one** (**16**). Oil; $[\alpha]_D^{26} = -91.2^{\circ}$ (*c* 1.04, CHCl₃); ¹H NMR δ 5.74 (1H, t, *J*=1.3 Hz), 4.04 (2H, q, *J*=7.1 Hz), 2.75–2.94 (2H, m), 2.38 (1H, dt, *J*=9.2, 13.8 Hz), 2.24 (2H, s), 2.17 (1H, ddd, *J*=4, 7.7, 13.8 Hz), 2.03 (1H, dt, *J*=4.3, 14 Hz), 1.73–1.80 (3H, m), 1.26–1.62 (4H, m), 1.17 (3H, t, *J*=7.1 Hz); ¹³C NMR δ 210.0, 194.4, 175.4, 123.1, 60.6, 55.9, 53.0, 45.6, 36.0, 30.8, 27.1, 25.5, 22.9, 20.9, 14.0; IR 3022, 2935, 1712, 1697, 1628, 1470, 1448, 1417 cm⁻¹; MS *m*/*z* 248 (M⁺); high-resolution mass *m*/*z* calcd for C₁₅H₂₀O₃ (M⁺) 248.1410, found: 248.1407.

4.5.6. (1*R**,2*R**,8*S**)-2,8-Dimethyltricyclo[6.4.0.0^{1,5}]dodec-**4-en-3-one** (17). Oil; ¹H NMR δ 5.82 (1H, s), 2.45–2.77 (3H, m), 2.36 (1H, q, *J*=7.9 Hz), 1.48–1.75 (7H, m), 1.22–1.34 (1H, m), 1.28 (3H, d, *J*=7.9 Hz), 1.04–1.12 (1H, m), 0.90 (3H, s); ¹³C NMR δ 213.8, 194.1, 123.0, 58.9, 53.2, 46.2, 38.4, 36.8, 33.5, 27.0, 23.9, 23.5, 22.0, 15.0; IR 2927, 2868, 1701, 1632, 1458 cm⁻¹; MS *m*/*z* 204 (M⁺); high-resolution mass *m*/*z* calcd for C₁₄H₂₀O (M⁺) 204.1513, found: 204.1506.

4.5.7. (*IR**,8*S**)-4,8-Dimethyltricyclo[6.4.0.0^{1,5}]dodec-4en-3-one (18). Mp 87–89°C; ¹H NMR δ 2.38–2.68 (3H, m), 2.26, 2.10 (each 1H, d, *J*=17.8 Hz), 1.06–1.78 (12H, m), 0.71 (3H, s); ¹³C NMR δ 211.2, 187.7, 130.8, 54.0, 43.3, 40.2, 35.2, 33.6, 25.3, 23.8, 22.9, 22.7, 8.2; IR 2915, 2852, 1700, 1662 cm⁻¹; MS *m*/*z* 204 (M⁺); high-resolution mass *m*/*z* calcd for C₁₄H₂₀O (M⁺) 204.1513, found: 204.1518.

4.5.8. (1*S*^{*},8*R*^{*})-7-Oxatricyclo[6.4.0.0^{1.5}]dodec-4-en-3-one (19). Oil; ¹H NMR δ 5.90 (1H, dd, *J*=1.1, 1.7 Hz), 4.80 (1H, dd, *J*=1.7, 16.3 Hz), 4.56 (1H, dd, *J*=1.1, 16.3 Hz), 3.63 (1H, s), 2.37, 2.13 (each 1H, d, *J*=17.3 Hz), 2.07–2.17 (1H, m), 1.50–1.79 (5H, m), 1.19–1.32 (2H, m); ¹³C NMR δ 208.9, 189.1, 122.7, 79.9, 64.8, 51.6, 45.5, 32.2, 26.1, 22.9, 19.3; IR 2933, 2856, 1716, 1643, 1446 cm⁻¹; MS *m*/*z* 178 (M⁺); high-resolution mass *m*/*z* calcd for C₁₁H₁₄O₂ (M⁺) 178.0994, found: 178.0990.

4.5.9. (**1***S*^{*},**8***R*^{*})-**8**-Methyl-7-oxatricyclo[6.4.0.0^{1,5}]dodec-**4-en-3-one** (**20**). Mp 57–59°C; ¹H NMR δ 5.88 (1H, t, *J*=1.7 Hz), 4.75, 4.53 (each 1H, dd, *J*=1.7, 16.8 Hz), 2.29, 2.19 (each 1H, d, *J*=17.5 Hz), 2.04 (1H, dt, *J*=3, 14.2 Hz), 1.15–1.77 (7H, m), 1.01 (3H, s); ¹³C NMR δ 210.0, 190.1, 122.0, 80.6, 63.1, 54.9, 44.7, 35.5, 33.6, 23.3, 22.7, 21.4; IR 2934, 2852, 1702 cm⁻¹; MS *m/z* 192 (M⁺); high-resolution mass *m/z* calcd for C₁₂H₁₆O₂ (M⁺) 192.1149, found: 192.1147.

4.5.10. (1*S*^{*},8*R*^{*})-7-Aza-8-tosyltricyclo[6.4.0.0^{1,5}]dec-4en-3-one (21). Mp 92–93°C; ¹H NMR δ 7.67, 7.34 (each 2H, d, *J*=8.3 Hz), 5.76 (1H, s), 4.53, 4.09 (each 1H, d, *J*=17.2 Hz), 2.73–2.77 (2H, m), 2.44 (3H, s), 2.23, 2.02 (each 1H, d, *J*=17.3 Hz), 1.18–1.83 (7H, m); ¹³C NMR δ 207.0, 180.8, 144.0, 132.6, 129.9, 127.4, 123.8, 63.7, 52.4, 49.0, 46.0, 32.7, 25.7, 23.1, 21.5, 18.9 cm⁻¹; MS *m/z* 331 (M⁺); high-resolution mass *m/z* calcd for $C_{18}H_{21}NO_3S$ (M⁺) 331.1240, found: 331.1231.

4.5.11. (1*S**,8*R**)-7-Aza-8-benzyloxycarbonyltricyclo-[6.4.0.0^{1,5}]dec-4-en-3-one (22). Oil; ¹H NMR δ 7.36 (5H, s), 5.90 (1H, s), 5.16, 5.10 (each 1H, d, *J*=12.9 Hz), 4.62, 4.28 (each 1H, *J*=18.2 Hz), 3.15, 2.77 (each 1H, d, *J*=13 Hz), 2.18–2.32 (2H, m), 1.18–1.88 (6H, m), 1.07(3H, s); ¹³C NMR δ 208.7, 182.9, 154.0, 136.6, 128.5, 128.0, 127.7, 123.1, 66.4, 64.1, 55.8, 46.1, 43.3, 35.7, 32.3, 23.5, 21.6, 21.2; IR 2933, 2860, 1713, 1655, 1448 cm⁻¹; MS *m/z* 325 (M⁺); high-resolution mass *m/z* calcd for C₂₀H₂₃NO₃ (M⁺) 325.1676, found: 325.1686.

4.5.12. (**1***S*^{*},**9***S*^{*})-**Benzo**[*e*]-**9**-ethoxycarbonyltricyclo-[**7.4.0.0**^{1,5}]**tridec-4-en-3-one** (**49**). Oil; ¹H NMR δ 7.64 (1H, d, *J*=7.9 Hz), 7.20–7.40 (3H, m), 6.31 (1H, s), 3.93 (2H, q, *J*=7.1 Hz), 3.55, 2.92 (each 1H, d, *J*=18.2 Hz), 2.66, 2.53 (each 1H, d, *J*=18.4 Hz), 1.40–1.95 (6H, m), 1.18–1.31 (2H, m), 0.97 (3H, t, *J*=7.1 Hz); ¹³C NMR δ 207.2, 179.1, 174.9, 136.4, 131.1, 129.0, 128.8, 127.0, 126.4, 122.6, 60.7, 48.0, 46.8, 45.0, 34.7, 32.8, 29.7, 22.2, 20.3, 13.8; IR 2935, 2864, 1716, 1647, 1446 cm⁻¹; MS *m/z* 310 (M⁺); high-resolution mass *m/z* calcd for C₂₀H₂₂O₃ (M⁺) 310.1567, found: 310.1556.

Acknowledgements

The authors are grateful to Mrs F. Hasegawa of this faculty for her mass spectral measurement.

References

- Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc., Chem. Commun. 1971, 36.
- For reviews: (a) Brummond, K. M.; Kent, J. L. *Tetrahedron* 2000, 56, 3263. (b) Fletcher, A. J.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2000, 1657. (c) Chung, Y. K. Coord. Chem. Rev. 1999, 188, 297.
- 3. Schore, N. E.; Croudace, M. C. J. Org. Chem. 1981, 46, 5436.
- 4. (a) Price, M. E.; Schore, N. E. Tetrahedron Lett. 1989, 30, 5865. (b) Price, M. E.; Schore, N. E. J. Org. Chem. 1989, 54, 5662. (c) Castro, J.; Sörensen, H.; Riera, A.; Morin, C.; Moyano, A.; Pericàs, M. A.; Greene, A. E. J. Am. Chem. Soc. 1990, 112, 9388. (d) Bernardes, V.; Kann, N.; Riera, A.; Moyano, A.; Pericàs, M. A.; Greene, A. E. J. Org. Chem. 1995, 60, 6670. (e) Smit, W. A.; Buhanjuk, S. M.; Simonyan, S. O.; Shashkov, A. S.; Struchkov, Y. T.; Yanovsky, A. I.; Caple, R.; Gybin, A. S.; Anderson, L. G.; Whiteford, J. A. Tetrahedron Lett. 1991, 32, 2105. (f) Cassayre, J.; Zard, S. Z. J. Am. Chem. Soc. 1999, 121, 6072. (g) Krafft, M. E.; Wright, C. Tetrahedron Lett. 1992, 33, 151. (h) Van der Waals, A.; Keese, R. J. Chem. Soc., Chem. Commun. 1992, 570. (i) Takano, S.; Inomata, K.; Ogasawara, K. Chem. Lett. 1992, 443. (j) Takano, S.; Inomata, K.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1992, 169. (k) Yoo, S.-E.; Lee, S. H.; Jeong, N.; Cho, I. Tetrahedron Lett. 1993, 34, 3435. (1) Yoo, S.-E.; Lee, S. H. J. Org. Chem. 1994, 59, 6968. (m) Jeong, N.; Lee, B. Y.; Lee, S. M.; Chung, Y. K.;

Lee, S.-G. Tetrahedron Lett. **1993**, *34*, 4023. (n). Johnstone, C.; Kerr, W. J.; Lange, U. J. Chem. Soc., Chem. Commun. **1995**, 457. (o). Van Ornum, S. G.; Cook, J. M. Tetrahedron Lett. **1996**, *37*, 7185. (p). Van Ornum, S. G.; Bruendl, M. M.; Cook, J. M. Tetrahedron Lett. **1998**, *39*, 6649. (q). Thommen, M.; Keese, R. Synlett **1997**, 231. (r). Jamison, T. F.; Shambayati, S.; Crowe, W. E.; Screiber, S. L. J. Am. Chem. Soc. **1994**, *116*, 5505. (s). Brummond, K. M.; Lu, J. J. Am. Chem. Soc. **1999**, *121*, 5087.

- 5. (a) Kundsen, M. J.; Schore, N. E. J. Org. Chem. 1984, 49, 5025. (b) Schore, N. E.; Kundsen, M. J. J. Org. Chem. 1987, 52, 569. (c) Schore, N. E.; Rowley, E. G. J. Am. Chem. Soc. 1988, 110, 5224. (d) Rowley, E. G.; Schore, N. E. J. Org. Chem. 1992, 57, 6853. (e) Gybin, A. S.; Smit, W. A.; Caple, R.; Veretenov, A. L.; Shashkov, A. S.; Vorontsova, L. G.; Kurella, M. G.; Chertkov, V. S.; Carapetyan, A. A.; Kosnikov, A. Y.; Alexanyan, M. S.; Lindeman, S. V.; Panov, V. N.; Maleev, A. V.; Struchkov, Y. T.; Sharpe, S. M. J. Am. Chem. Soc. 1992, 114, 5555. (f) Tormo, J.; Moyano, A.; Pericàs, M. A.; Riera, A. J. Org. Chem. 1997, 62, 4851. (g) Paquette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912. (h) Jamison, T. F.; Shambayati, S.; Crowe, W. E.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 4353. (i) Montana, A.-M.; Moyano, A.; Pericàs, M. A.; Serratosa, F. Tetrahedron 1985, 41, 5995. (j) Van Ornum, S. G.; Cook, J. M. Tetrahedron Lett. 1997, 38, 3657. (k) Marco-Contelles, J. J. Org. Chem. 1996, 61, 7666. (l) Almansa, C.; Moyano, A.; Serratosa, F. Tetrahedron 1988, 44, 2657. (m) Castro, J.; Moyano, A.; Pericàs, M. A.; Riera, A. J. Org. Chem. 1998, 63, 3346.
- Intramolecular reaction: (a) Stolle, A.; Becker, H.; Salaün, J.; de Meijere, A. *Tetrahedron Lett.* **1994**, *35*, 3517. (b) Bräse, S.; Schömenauer, S.; McGaffin, G.; Stolle, A.; de Meijere, A. *Chem. Eur. J.* **1996**, *2*, 545. (c) Corlay, H.; Fouquet, E.; Magnier, E.; Motherwell, W. B. *J. Chem. Soc., Chem. Commun.* **1999**, 183. (d) Renaud, J.-L.; Aubert, C.; Malacria, M. *Tetrahedron* **1999**, *55*, 5113. Intermolecular reaction: (e) Smit, W. A.; Kireev, S. L.; Nefedov, O. M.; Tarasov, V. A. *Tetrahedron Lett.* **1989**, *30*, 4021. (f) Corlay, H.; James, I. W.; Fouquet, E.; Schmidt, J.; Motherwell, W. B. *Synlett* **1996**, 990.
- Reviews for construction of quaternary centers: (a) Martin, S. F. *Tetrahedron* **1980**, *36*, 419. (b) Fuji, K. *Chem. Rev.* **1993**, *93*, 2037.
- 8. To our knowledge, only one example has been reported on

intermolecular Pauson–Khand reaction of tetra-substituted olefin. Thus, the reaction of an ethyne–cobalt complex with tetra-substituted olefin, which was in situ generated by isomerization of trisubstituted olefin, gave angular tricyclic compound in less than 1% yield (6.5% yield when 20 equiv. of olefin was used). Billington, D. C.; Kerr, W. J.; Pauson, P. L.; Farnocchi, C. F.; *J. Organomet. Chem.*, **1998**, *356*, 213. Intramolecular Pauson–Khand reaction of tetra-substituted olefin does not give desired tricyclic product.^{5a,b}

- For a preliminary account of this work: Ishizaki, M.; Iwahara, K.; Kyoumura, K.; Hoshino, O. Synlett 1999, 587.
- Ikeda, T.; Yue, S.; Hutchinson, C. R. J. Org. Chem. 1985, 50, 5193.
- 11. Grattan, T. J.; Whitehurst, J. S. J. Chem. Soc., Perkin Trans. 1 1990, 11.
- 12. Jung, M. E.; Hatfield, G. L. Tetrahedron Lett. 1983, 24, 3175.
- Begley, M. J.; Ladlow, M.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1988, 1095.
- 14. Nishida, A.; Takahashi, H.; Takeda, H.; Takada, N.; Yonemitsu, O. J. Am. Chem. Soc. **1990**, *112*, 902.
- Pfau, M.; Revial, G.; Guingant, A.; d'Angelo,, J. J. Am. Chem. Soc. 1985, 107, 273.
- 16. Guingant, A.; Hammami, H. *Tetrahedron: Asymmetry* **1991**, 2, 411.
- 17. Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.
- 18. Karpf, M. Helv. Chim. Acta 1984, 67, 73.
- (a) NMO: Shambayati, S.; Crowe, W. E.; Schreiber, S. L. *Tetrahedron Lett.* **1990**, *31*, 5289. (b) TMANO: Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S. H.; Yoo, S.-E. *Synlett* **1991**, 204. (c) BuSMe: Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. *Synlett* **1999**, 771. (d) primary amines: Sugihara, T.; Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 2801.
- It is known that Pauson-Khand reaction of tri-substituted olefins furnishes tricyclic products in low yield. Montana, A. M.; Moyano, A.; Pericàs, M. A.; Serratosa, F. An. Quim. Ser. C 1988, 84, 82.
- Lee, E.; Lee, Y. R.; Moon, B.; Kwon, O.; Shim, M. S.; Yun, J. S. J. Org. Chem. 1994, 59, 1444.
- Mori, M.; Kaneta, N.; Isono, N.; Shibasaki, M. Tetrahedron Lett. 1991, 32, 6139.
- 23. The reaction of the trimethylsilylacetylene did not afford the corresponding tetracyclic compound.
- 24. Corey, E. J.; Kirst, H. A. Tetrahedron Lett. 1968, 5041.